¿Es TikTok el camino para el éxito comercial en redes sociales? La intención de uso
DOI:
https://doi.org/10.61154/holopraxis.v8i1.3454Palabras clave:
Redes sociales; plataforma digital; capital social; comercio electrónico; comercialización. (Tesauro UNESCO).Resumen
Este estudio se dedicó a examinar la intención de empleo de la plataforma TikTok con propósitos comerciales en el ámbito de las redes sociales. Para ello, se aplicó un Modelo de Aceptación de Tecnología (TAM) ampliado que incorpora variables como la facilidad de uso percibida, utilidad de uso percibida y la masa crítica, cuyos antecedentes se investigaron minuciosamente. La muestra consistió en 172 individuos jóvenes de entre 18 y 25 años, cuyas respuestas se sometieron a análisis mediante la técnica CB-SEM. Los hallazgos indicaron que tanto la facilidad de uso como la utilidad de uso percibida presentan una correlación estadísticamente significativa con la intención de uso. Sin embargo, se observó que la masa crítica no muestra una relación significativa con esta última variable. Esto sugiere que una mayor popularidad de la plataforma podría no ser un factor determinante para su adopción, posiblemente debido a preocupaciones sobre la promoción de estereotipos de belleza en TikTok.Descargas
Citas
Abdullah, F., & Ward, R. (2016). Developing a General Extended Technology Acceptance Model for E-Learning (GETAMEL) by analysing commonly used external factors. Computers in Human Behavior, 56, 238–256. https://doi.org/10.1016/j.chb.2015.11.036
Al-rahmi, W. M., Othman, M. S., & Mi Yusuf, L. (2015). Using Social Media for Research: The Role of Interactivity, Collaborative Learning, and Engagement on the Performance of Students in Malaysian Post-Secondary Institutes. Mediterranean Journal of Social Sciences. https://doi.org/10.5901/mjss.2015.v6n5s2p536
Ancillai, C., Terho, H., Cardinali, S., & Pascucci, F. (2019). Advancing social media driven sales research: Establishing conceptual foundations for B-to-B social selling. Industrial Marketing Management, 82, 293–308. https://doi.org/10.1016/j.indmarman.2019.01.002
Bagozzi, R. P. (1991). Further thoughts on the validity of measures of elation, gladness, and joy. Journal of Personality and Social Psychology, 61(1), 98–104. https://doi.org/10.1037/0022-3514.61.1.98
Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1), 74–94. https://doi.org/10.1007/BF02723327
Bahcecik, Y., Akay, S., & Akdemir, A. (2019). A Review of Digital Brand Positioning Strategies of Internet Entrepreneurship in the Context of Virtual Organizations: Facebook, Instagram and Youtube Samples. Procedia Computer Science, 158, 513–522. https://doi.org/10.1016/j.procs.2019.09.083
Bogea, F., & Brito, E. P. Z. (2018). Determinants of Social Media Adoption by Large Companies. Journal of Technology Management & Innovation, 13(1), 11–18. https://doi.org/10.4067/S0718-27242018000100011
Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297–334. https://doi.org/10.1007/BF02310555
Dahnil, M. I., Marzuki, K. M., Langgat, J., & Fabeil, N. F. (2014). Factors Influencing SMEs Adoption of Social Media Marketing. Procedia - Social and Behavioral Sciences, 148, 119–126. https://doi.org/10.1016/j.sbspro.2014.07.025
Davis, F. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. Source: MIS Quarterly. https://doi.org/10.2307/249008
Dedeoğlu, B., Taheri, B., Okumus, F., & Gannon, M. (2020). Understanding the importance that consumers attach to social media sharing (ISMS): Scale development and validation. Tourism Management, 76, 1–16. https://doi.org/10.1016/j.tourman.2019.103954
Effendy, F., Hurriyati, R., & Hendrayati, H. (2021). Perceived Usefulness, Perceived Ease of Use, and Social Influence: Intention to Use e-Wallet. Advances in Economics, Business and Management Research, 187. https://doi.org/10.2991/aebmr.k.210831.060
Franque, F. B., Oliveira, T., Tam, C., & Santini, F. de O. (2020). A meta-analysis of the quantitative studies in continuance intention to use an information system. Internet Research, 31(1), 123–158. https://doi.org/10.1108/INTR-03-2019-0103
He, L., Sopjani, L., & Laurenti, R. (2021). User participation dilemmas in the circular economy: An empirical study of Scandinavia’s largest peer-to-peer product sharing platform. Sustainable Production and Consumption, 27, 975–985. https://doi.org/10.1016/j.spc.2021.02.027
He, Y., Chen, Q., & Kitkuakul, S. (2018). Regulatory focus and technology acceptance: Perceived ease of use and usefulness as efficacy. Cogent Business & Management, 5(1), 1459006. https://doi.org/10.1080/23311975.2018.1459006
Hu, L., & Bentler, P. M. (1998). Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychological Methods, 3(4), 424–453. https://doi.org/10.1037/1082-989X.3.4.424
Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55. https://doi.org/10.1080/10705519909540118
Huang, F., Teo, T., & Zhou, M. (2019). Factors Affecting Chinese English as a Foreign Language Teachers’ Technology Acceptance: A Qualitative Study. Journal of Educational Computing Research, 57(1), 83–105. https://doi.org/10.1177/0735633117746168
Indrawati, P., & Muthaiyah, S. (2022). eWOM via the TikTok application and its influence on the purchase intention of somethinc products. Asia Pacific Management Review, 1–11. https://doi.org/10.1016/j.apmrv.2022.07.007
James, L., Mulaik, S., & Brett, J. (1982). Causal Analysis: Assumptions, Models, and Data. Beverly Hills: Sage Publications.
Kalinic, Z., Marinkovic, V., Molinillo, S., & Liébana-Cabanillas, F. (2019). A multi-analytical approach to peer-to-peer mobile payment acceptance prediction. Journal of Retailing and Consumer Services, 49, 143–153. https://doi.org/10.1016/j.jretconser.2019.03.016
Keni, K., Tjoe, H., Wilson, N., & Negara, E. S. (2020). The Effect of Perceived Security, Ease of Use and Perceived Usefulness on Intention to Use Towards Mobile Payment Services in Indonesia. Advances in Social Science, Education and Humanities Research, 478, 78–84. https://doi.org/10.2991/assehr.k.201209.010
Lew, S., Tan, G. W.-H., Loh, X.-M., Hew, J.-J., & Ooi, K.-B. (2020). The disruptive mobile wallet in the hospitality industry: An extended mobile technology acceptance model. Technology in Society, 63, 101430. https://doi.org/10.1016/j.techsoc.2020.101430
Lin, K.-Y., & Lu, H.-P. (2011). Why people use social networking sites: An empirical study integrating network externalities and motivation theory. Computers in Human Behavior, 27(3), 1152–1161. https://doi.org/10.1016/j.chb.2010.12.009
Liu, J. (2021). The Influence of the Body Image Presented Through TikTok Trend-Videos and Its Possible Reasons. Advances in Social Science, Education and Humanities Research, 559, 359–363.
Markus, M. L. (1987). Toward a “critical mass” theory of interactive media universal access, interdependence and diffusion. Communication Research: An International Quarterly, 14(5), 491–511. https://www.learntechlib.org/p/139984/
Masrianto, A., Hartoyo, H., Hubeis, A., & Hasanah, N. (2022). Digital Marketing Utilization Index for Evaluating and Improving Company Digital Marketing Capability. Journal of Open Innovation: Technology, Market, and Complexity, 8(3), 1–8. https://doi.org/10.3390/joitmc8030153
Medina, J., Ábrego, D., & Echeverría, O. (2021). Satisfacción, facilidad de uso y confianza del ciudadano en el gobierno electrónico. Investigación Administrativa, 50(127), 1–20. https://doi.org/10.35426/IAv50n127.04
Mohamed, H., & Lamia, M. (2018). Implementing flipped classroom that used an intelligent tutoring system into learning process. Computers & Education, 124, 62–76. https://doi.org/10.1016/j.compedu.2018.05.011
Natasia, S., Wiranti, Y., & Parastika, A. (2021). Acceptance analysis of NUADU as e-learning platform using the Technology Acceptance Model (TAM) approach. Procedia Computer Science, 197, 512–520. https://doi.org/10.1016/j.procs.2021.12.168
Nguyen, M., Fujioka, J., Wentlandt, K., Onabajo, N., Wong, I., Bhatia, R. S., Bhattacharyya, O., & Stamenova, V. (2020). Using the technology acceptance model to explore health provider and administrator perceptions of the usefulness and ease of using technology in palliative care. BMC Palliative Care, 19(1), 138. https://doi.org/10.1186/s12904-020-00644-8
Nuzulita, N., & Subriadi, A. P. (2020). The role of risk‐benefit and privacy analysis to understand different uses of social media by Generations X, Y, and Z in Indonesia. THE ELECTRONIC JOURNAL OF INFORMATION SYSTEMS IN DEVELOPING COUNTRIES, 86(3). https://doi.org/10.1002/isd2.12122
Phillips, C., & O’Flaherty, J. (2019). Evaluating nursing students’ engagement in an online course using flipped virtual classrooms. Student Success, 10(1), 59–71. https://doi.org/10.5204/ssj.v10i1.1098
Rauniar, R., Rawski, G., Yang, J., & Johnson, B. (2014). Technology acceptance model (TAM) and social media usage: An empirical study on Facebook. Journal of Enterprise Information Management, 27(1), 6–30. https://doi.org/10.1108/JEIM-04-2012-0011
Salati, G. H., & de Souza, F. (2017). User´s Perspective of Eletronic Government Adoption in Brazil. Journal of Technology Management & Innovation, 12(2), 1–10. https://doi.org/10.4067/S0718-27242017000200001
Scherer, R., Siddiq, F., & Tondeur, J. (2019). The technology acceptance model (TAM): A meta-analytic structural equation modeling approach to explaining teachers’ adoption of digital technology in education. Computers & Education, 128, 13–35. https://doi.org/10.1016/j.compedu.2018.09.009
Seekis, V., & Kennedy, R. (2023). The impact of #beauty and #self-compassion tiktok videos on young women’s appearance shame and anxiety, self-compassion, mood, and comparison processes. Body Image, 45, 117–125. https://doi.org/10.1016/j.bodyim.2023.02.006
Shen, X. L., Cheung, C., & Lee, M. (2013). Perceived critical mass and collective intention in social media-supported small group communication. International Journal of Information Management, 33(5), 707–715. https://doi.org/10.1016/j.ijinfomgt.2013.04.005
Sugawara, H. M., & MacCallum, R. C. (1993). Effect of Estimation Method on Incremental Fit Indexes for Covariance Structure Models. Applied Psychological Measurement, 17(4), 365–377. https://doi.org/10.1177/014662169301700405
Sullivan, Y. W., & Koh, C. E. (2019). Social media enablers and inhibitors: Understanding their relationships in a social networking site context. International Journal of Information Management, 49, 170–189. https://doi.org/10.1016/j.ijinfomgt.2019.03.014
Ten, A., & Niels, G. (2020). Critical Mass for Two-sided Platforms and the Strength of the Externalities. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3591811
Tomic, N., & Bozic, S. (2014). A modified Geosite Assessment Model (M-GAM) and its Application on the Lazar Canyon area (Serbia). International Journal of Environmental Research, 8(4), 1041–1052. https://n9.cl/srwb7
Publicado
Cómo citar
Número
Sección
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
CC BY-NC-SA : Esta licencia permite a los reutilizadores distribuir, remezclar, adaptar y construir sobre el material en cualquier medio o formato solo con fines no comerciales, y solo siempre y cuando se dé la atribución al creador. Si remezcla, adapta o construye sobre el material, debe licenciar el material modificado bajo términos idénticos.
OAI-PMH URL: https://revista.uniandes.edu.ec/ojs/index.php/holopraxis/oai