¿Es TikTok el camino para el éxito comercial en redes sociales? La intención de uso

Autores/as

DOI:

https://doi.org/10.61154/holopraxis.v8i1.3454

Palabras clave:

Redes sociales; plataforma digital; capital social; comercio electrónico; comercialización. (Tesauro UNESCO).

Resumen

Este estudio se dedicó a examinar la intención de empleo de la plataforma TikTok con propósitos comerciales en el ámbito de las redes sociales. Para ello, se aplicó un Modelo de Aceptación de Tecnología (TAM) ampliado que incorpora variables como la facilidad de uso percibida, utilidad de uso percibida y la masa crítica, cuyos antecedentes se investigaron minuciosamente. La muestra consistió en 172 individuos jóvenes de entre 18 y 25 años, cuyas respuestas se sometieron a análisis mediante la técnica CB-SEM. Los hallazgos indicaron que tanto la facilidad de uso como la utilidad de uso percibida presentan una correlación estadísticamente significativa con la intención de uso. Sin embargo, se observó que la masa crítica no muestra una relación significativa con esta última variable. Esto sugiere que una mayor popularidad de la plataforma podría no ser un factor determinante para su adopción, posiblemente debido a preocupaciones sobre la promoción de estereotipos de belleza en TikTok.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abdullah, F., & Ward, R. (2016). Developing a General Extended Technology Acceptance Model for E-Learning (GETAMEL) by analysing commonly used external factors. Computers in Human Behavior, 56, 238–256. https://doi.org/10.1016/j.chb.2015.11.036

Al-rahmi, W. M., Othman, M. S., & Mi Yusuf, L. (2015). Using Social Media for Research: The Role of Interactivity, Collaborative Learning, and Engagement on the Performance of Students in Malaysian Post-Secondary Institutes. Mediterranean Journal of Social Sciences. https://doi.org/10.5901/mjss.2015.v6n5s2p536

Ancillai, C., Terho, H., Cardinali, S., & Pascucci, F. (2019). Advancing social media driven sales research: Establishing conceptual foundations for B-to-B social selling. Industrial Marketing Management, 82, 293–308. https://doi.org/10.1016/j.indmarman.2019.01.002

Bagozzi, R. P. (1991). Further thoughts on the validity of measures of elation, gladness, and joy. Journal of Personality and Social Psychology, 61(1), 98–104. https://doi.org/10.1037/0022-3514.61.1.98

Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1), 74–94. https://doi.org/10.1007/BF02723327

Bahcecik, Y., Akay, S., & Akdemir, A. (2019). A Review of Digital Brand Positioning Strategies of Internet Entrepreneurship in the Context of Virtual Organizations: Facebook, Instagram and Youtube Samples. Procedia Computer Science, 158, 513–522. https://doi.org/10.1016/j.procs.2019.09.083

Bogea, F., & Brito, E. P. Z. (2018). Determinants of Social Media Adoption by Large Companies. Journal of Technology Management & Innovation, 13(1), 11–18. https://doi.org/10.4067/S0718-27242018000100011

Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297–334. https://doi.org/10.1007/BF02310555

Dahnil, M. I., Marzuki, K. M., Langgat, J., & Fabeil, N. F. (2014). Factors Influencing SMEs Adoption of Social Media Marketing. Procedia - Social and Behavioral Sciences, 148, 119–126. https://doi.org/10.1016/j.sbspro.2014.07.025

Davis, F. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. Source: MIS Quarterly. https://doi.org/10.2307/249008

Dedeoğlu, B., Taheri, B., Okumus, F., & Gannon, M. (2020). Understanding the importance that consumers attach to social media sharing (ISMS): Scale development and validation. Tourism Management, 76, 1–16. https://doi.org/10.1016/j.tourman.2019.103954

Effendy, F., Hurriyati, R., & Hendrayati, H. (2021). Perceived Usefulness, Perceived Ease of Use, and Social Influence: Intention to Use e-Wallet. Advances in Economics, Business and Management Research, 187. https://doi.org/10.2991/aebmr.k.210831.060

Franque, F. B., Oliveira, T., Tam, C., & Santini, F. de O. (2020). A meta-analysis of the quantitative studies in continuance intention to use an information system. Internet Research, 31(1), 123–158. https://doi.org/10.1108/INTR-03-2019-0103

He, L., Sopjani, L., & Laurenti, R. (2021). User participation dilemmas in the circular economy: An empirical study of Scandinavia’s largest peer-to-peer product sharing platform. Sustainable Production and Consumption, 27, 975–985. https://doi.org/10.1016/j.spc.2021.02.027

He, Y., Chen, Q., & Kitkuakul, S. (2018). Regulatory focus and technology acceptance: Perceived ease of use and usefulness as efficacy. Cogent Business & Management, 5(1), 1459006. https://doi.org/10.1080/23311975.2018.1459006

Hu, L., & Bentler, P. M. (1998). Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychological Methods, 3(4), 424–453. https://doi.org/10.1037/1082-989X.3.4.424

Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55. https://doi.org/10.1080/10705519909540118

Huang, F., Teo, T., & Zhou, M. (2019). Factors Affecting Chinese English as a Foreign Language Teachers’ Technology Acceptance: A Qualitative Study. Journal of Educational Computing Research, 57(1), 83–105. https://doi.org/10.1177/0735633117746168

Indrawati, P., & Muthaiyah, S. (2022). eWOM via the TikTok application and its influence on the purchase intention of somethinc products. Asia Pacific Management Review, 1–11. https://doi.org/10.1016/j.apmrv.2022.07.007

James, L., Mulaik, S., & Brett, J. (1982). Causal Analysis: Assumptions, Models, and Data. Beverly Hills: Sage Publications.

Kalinic, Z., Marinkovic, V., Molinillo, S., & Liébana-Cabanillas, F. (2019). A multi-analytical approach to peer-to-peer mobile payment acceptance prediction. Journal of Retailing and Consumer Services, 49, 143–153. https://doi.org/10.1016/j.jretconser.2019.03.016

Keni, K., Tjoe, H., Wilson, N., & Negara, E. S. (2020). The Effect of Perceived Security, Ease of Use and Perceived Usefulness on Intention to Use Towards Mobile Payment Services in Indonesia. Advances in Social Science, Education and Humanities Research, 478, 78–84. https://doi.org/10.2991/assehr.k.201209.010

Lew, S., Tan, G. W.-H., Loh, X.-M., Hew, J.-J., & Ooi, K.-B. (2020). The disruptive mobile wallet in the hospitality industry: An extended mobile technology acceptance model. Technology in Society, 63, 101430. https://doi.org/10.1016/j.techsoc.2020.101430

Lin, K.-Y., & Lu, H.-P. (2011). Why people use social networking sites: An empirical study integrating network externalities and motivation theory. Computers in Human Behavior, 27(3), 1152–1161. https://doi.org/10.1016/j.chb.2010.12.009

Liu, J. (2021). The Influence of the Body Image Presented Through TikTok Trend-Videos and Its Possible Reasons. Advances in Social Science, Education and Humanities Research, 559, 359–363.

Markus, M. L. (1987). Toward a “critical mass” theory of interactive media universal access, interdependence and diffusion. Communication Research: An International Quarterly, 14(5), 491–511. https://www.learntechlib.org/p/139984/

Masrianto, A., Hartoyo, H., Hubeis, A., & Hasanah, N. (2022). Digital Marketing Utilization Index for Evaluating and Improving Company Digital Marketing Capability. Journal of Open Innovation: Technology, Market, and Complexity, 8(3), 1–8. https://doi.org/10.3390/joitmc8030153

Medina, J., Ábrego, D., & Echeverría, O. (2021). Satisfacción, facilidad de uso y confianza del ciudadano en el gobierno electrónico. Investigación Administrativa, 50(127), 1–20. https://doi.org/10.35426/IAv50n127.04

Mohamed, H., & Lamia, M. (2018). Implementing flipped classroom that used an intelligent tutoring system into learning process. Computers & Education, 124, 62–76. https://doi.org/10.1016/j.compedu.2018.05.011

Natasia, S., Wiranti, Y., & Parastika, A. (2021). Acceptance analysis of NUADU as e-learning platform using the Technology Acceptance Model (TAM) approach. Procedia Computer Science, 197, 512–520. https://doi.org/10.1016/j.procs.2021.12.168

Nguyen, M., Fujioka, J., Wentlandt, K., Onabajo, N., Wong, I., Bhatia, R. S., Bhattacharyya, O., & Stamenova, V. (2020). Using the technology acceptance model to explore health provider and administrator perceptions of the usefulness and ease of using technology in palliative care. BMC Palliative Care, 19(1), 138. https://doi.org/10.1186/s12904-020-00644-8

Nuzulita, N., & Subriadi, A. P. (2020). The role of risk‐benefit and privacy analysis to understand different uses of social media by Generations X, Y, and Z in Indonesia. THE ELECTRONIC JOURNAL OF INFORMATION SYSTEMS IN DEVELOPING COUNTRIES, 86(3). https://doi.org/10.1002/isd2.12122

Phillips, C., & O’Flaherty, J. (2019). Evaluating nursing students’ engagement in an online course using flipped virtual classrooms. Student Success, 10(1), 59–71. https://doi.org/10.5204/ssj.v10i1.1098

Rauniar, R., Rawski, G., Yang, J., & Johnson, B. (2014). Technology acceptance model (TAM) and social media usage: An empirical study on Facebook. Journal of Enterprise Information Management, 27(1), 6–30. https://doi.org/10.1108/JEIM-04-2012-0011

Salati, G. H., & de Souza, F. (2017). User´s Perspective of Eletronic Government Adoption in Brazil. Journal of Technology Management & Innovation, 12(2), 1–10. https://doi.org/10.4067/S0718-27242017000200001

Scherer, R., Siddiq, F., & Tondeur, J. (2019). The technology acceptance model (TAM): A meta-analytic structural equation modeling approach to explaining teachers’ adoption of digital technology in education. Computers & Education, 128, 13–35. https://doi.org/10.1016/j.compedu.2018.09.009

Seekis, V., & Kennedy, R. (2023). The impact of #beauty and #self-compassion tiktok videos on young women’s appearance shame and anxiety, self-compassion, mood, and comparison processes. Body Image, 45, 117–125. https://doi.org/10.1016/j.bodyim.2023.02.006

Shen, X. L., Cheung, C., & Lee, M. (2013). Perceived critical mass and collective intention in social media-supported small group communication. International Journal of Information Management, 33(5), 707–715. https://doi.org/10.1016/j.ijinfomgt.2013.04.005

Sugawara, H. M., & MacCallum, R. C. (1993). Effect of Estimation Method on Incremental Fit Indexes for Covariance Structure Models. Applied Psychological Measurement, 17(4), 365–377. https://doi.org/10.1177/014662169301700405

Sullivan, Y. W., & Koh, C. E. (2019). Social media enablers and inhibitors: Understanding their relationships in a social networking site context. International Journal of Information Management, 49, 170–189. https://doi.org/10.1016/j.ijinfomgt.2019.03.014

Ten, A., & Niels, G. (2020). Critical Mass for Two-sided Platforms and the Strength of the Externalities. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3591811

Tomic, N., & Bozic, S. (2014). A modified Geosite Assessment Model (M-GAM) and its Application on the Lazar Canyon area (Serbia). International Journal of Environmental Research, 8(4), 1041–1052. https://n9.cl/srwb7

Descargas

Publicado

31-01-2024

Cómo citar

Reyes Aguilar, D., & Bonisoli, L. (2024). ¿Es TikTok el camino para el éxito comercial en redes sociales? La intención de uso. HOLOPRAXIS. Revista De Ciencia, Tecnología E Innovación, 8(1), 1–22. https://doi.org/10.61154/holopraxis.v8i1.3454

Número

Sección

Investigación